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a  b  s  t  r  a  c  t

Symbolic  and non-symbolic  magnitude  representations,  measured  by  digit  or dot  compar-
ison tasks,  are  assumed  to  underlie  the  development  of  arithmetic  skills.  The  comparison
distance  effect  (CDE)  has  been  suggested  as a hallmark  of  the  preciseness  of  mental  mag-
nitude  representations.  It  implies  that  two magnitudes  are  harder  to  discriminate  when
the  numerical  distance  between  them  is small,  and may  therefore  differ  in children  with
mathematical  difficulties  (MD),  i.e.,  low  mathematical  achievement  or dyscalculia.  How-
ever, empirical  findings  on  the  CDE  in  children  with  MD  are  heterogeneous,  and  only
few  studies  assess  both  symbolic  and  non-symbolic  skills.  This  meta-analysis  therefore
integrates  44  symbolic  and  48  non-symbolic  response  time  (RT)  outcomes  reported  in  19
studies (N  = 1,630  subjects,  aged  6–14  years).  Independent  of  age,  children  with  MD  show
significantly  longer  mean  RTs  than  typically  achieving  controls,  particularly  on  symbolic
(Hedges’  g  =  0.75; 95%  CI  [0.51;  0.99]),  but  to a  significantly  lower  extent  also  on  non-
symbolic  (g =  0.24;  95%  CI  [0.13;  0.36])  tasks.  However,  no group  differences  were  found
for the CDE.  Extending  recent  work,  these  meta-analytical  findings  on  children  with  MD
corroborate  the diagnostic  importance  of  magnitude  comparison  speed  in symbolic  tasks.
By contrast,  the  validity  of  CDE  measures  in assessing  MD  is questioned.

© 2017  Elsevier  Ltd.  All rights  reserved.

What this paper adds

This meta-analysis adds substantially to the existing body of research on numerical cognition in children with low
mathematical achievement and dyscalculia (i.e., children with mathematical difficulties, MD). Being the first quantitative
meta-analysis that explicitly focuses on this clinically relevant population, it sheds light on the diagnostic meaning of

different measures of magnitude processing. Most importantly, it corroborates the significance of mainly symbolic (i.e.,
digit) comparison speed as a measure that identifies children with MD compared to typical achievers. This result is in line
with the access-deficit hypothesis rather than with the assumption that MD  up to dyscalculia arise from problems with
the innate Approximate Number System (ANS) per se. Moreover, the meta-analytical results support the recent discussion
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riticizing the CDE as an index of the symbolic magnitude representation (Lyons, Nuerk, & Ansari, 2015). The meta-analytical
odel explicitly controlled for statistical dependencies between multiple effects derived from the same study by using robust

ariance estimation. A main benefit of this procedure, compared to other approaches such as stratification, within-study
ooling or selecting only one outcome per study, is that all the available outcomes are taken into account (Hedges, Tipton,

 Johnson, 2010). Taken together, this study extends the current state of research on numerical cognition in school-aged
hildren with MD,  both in respect of the clinically relevant population it focuses on and the meta-analytical methodology
mployed.

. Introduction

Numerical processing skills and broader mathematical competencies help children deal with many everyday tasks and
uture professional activities (e.g., Ancker & Kaufman, 2007). In contrast, low mathematical skills negatively impact quality of
ife (Parsons & Bynner, 2005) and economic well-being (Ritchie & Bates, 2013). Importantly, a substantial number of primary
chool children experience learning difficulties in mathematics, which are referred to as developmental dyscalculia (DD)
hen causing an atypical numerical development despite normal intelligence and educational opportunities. Prevalence

stimates of DD vary between 3 and 7% (Butterworth, 2005; Reigosa et al., 2008; Rubinsten & Henik, 2009).
During the past two decades, an increasing number of studies aimed at unravelling the cognitive mechanisms behind

he development of mathematical difficulties, and consistently revealed that children with MD  are impaired in numerical
agnitude processing tasks (see De Smedt, Noël, Gilmore, & Ansari, 2013 for a literature review). However, it remains unclear

o what extent the processing of symbolic (i.e., digits) or non-symbolic (i.e., arrays of dots or other objects) magnitudes or
oth, is affected. Heterogeneous results in this regard have led to two  different etiological hypotheses: the ANS deficit
ypothesis (Wilson & Dehaene, 2007) versus the access deficit hypothesis (Rousselle & Noël, 2007).

According to the ANS deficit hypothesis,  the impairments originate from deficits in the Approximate Number System
ANS), an internal analogue magnitude system which allows humans to represent and manipulate approximate numerosities
Feigenson, Dehaene, & Spelke, 2004). Evidence for this hypothesis has been provided by studies demonstrating that children
ith MD  have problems with non-symbolic magnitude processing (e.g., Mazzocco, Feigenson, & Halberda, 2011; Piazza

t al., 2010) or both non-symbolic and symbolic magnitude processing (e.g., Landerl, Fussenegger, Moll, & Willburger, 2009;
ussolin, Mejias, & Noël, 2010), as symbolic magnitudes are assumed to be mapped onto the ANS (Mundy & Gilmore, 2009;

or an alternative view see Noël & Rousselle, 2011; Sasanguie, De Smedt & Reynvoet, 2017). By contrast, the access deficit
ypothesis assumes that children with MD  do not have an ANS dysfunction per se, but rather a problem with accessing
he ANS when magnitudes are expressed symbolically (Rousselle & Noël, 2007). This idea emerged from studies reporting
eficient symbolic, but intact non-symbolic, magnitude processing in children with MD (e.g., Andersson & Östergren, 2012;
e Smedt & Gilmore, 2011; Landerl & Kölle, 2009).

To integrate the findings mentioned above, a quantitative meta-analysis is necessary. Recently, three meta-analyses
eviewed the associations between magnitude processing and mathematical competencies in unselected populations.
ecause some authors argue that MD  up to DD form part of a continuum of ability (e.g., Dowker, 2009), we  here briefly
ummarize these meta-analyses: Chen and Li (2014) and Fazio, Bailey, Thompson and Siegler (2014) included non-symbolic
utcomes only. Both meta-analyses report a weak but reliable association with mathematical competence (i.e., a correlation
f r = .20 and r = .22, respectively). Schneider et al. (2016) extended these findings by also including symbolic magnitudes.
ased on 284 effect sizes, their analyses showed a significantly larger effect for symbolic (r = .30) than for non-symbolic
r = .24) magnitude processing, which decreased slightly with age. Furthermore, they observed the highest correlations for
esponse times (RT) and Weber fractions (i.e., the smallest ratio of two  numerosities that one can reliably judge as larger
r smaller; Halberda, Mazzocco, & Feigenson, 2008). However, the abovementioned meta-analyses do not offer satisfying
vidence to evaluate the two etiological hypotheses about the magnitude processing impairments observed in children with
D.  The current meta-analysis therefore closes this gap for this clinically relevant group.
Numerical magnitude processing is most frequently assessed by comparison tasks (Ansari, 2008; Lyons et al., 2015).

n such tasks, participants are instructed to select as quickly and accurately as possible which of two  visually presented
agnitudes is numerically larger. Visual stimuli can either be symbolic or non-symbolic. Typically, a comparison distance

ffect (CDE), or a conceptually similar ratio effect, is observed: Error rates and RT decrease with increasing distance between
he magnitudes at comparison (or a ratio between the magnitudes that substantially differs from 1). This has traditionally
een explained by assuming a cognitive magnitude representation on a mental number line, with small magnitudes on
he left and larger magnitudes on the right. Each magnitude is represented with certain noise, expressed as a Gaussian
istribution around the corresponding quantity (i.e., the mental number line hypothesis, Dehaene, 1997). Consequently, the
DE is thought to reflect the activation of magnitude representations on the mental number line, or in other words, the ANS
Price & Ansari, 2013; but see van Opstal, Gevers, de Moor & Verguts, 2008, modelling the CDE as a decisional process). The
ize of the CDE has even been assumed to index ANS precision: A smaller CDE was regarded as a more precise, and a larger
ffect as a less precise underlying representation (cf. Lyons et al., 2015). This assumption has led to several major theoretical

laims, one of which is that children with MD  should show a larger CDE because they have more noisy mental magnitude
epresentations than typically achieving peers (e.g., Mussolin et al., 2010).

Against this background, we meta-analyzed the CDE of children with MD on comparison tasks. In line with Lyons et al.
2015), we chose RT instead of the popular Weber fractions, which focus exclusively on error rates, as measure of performance
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because we were primarily interested in commonalities and differences between symbolic and non-symbolic comparison
performance, and error rates tend to be very low for symbolic comparisons (Lyons et al., 2015).

Several potential moderators of the performance of children with MD on symbolic and non-symbolic magnitude pro-
cessing tasks have been suggested. First, Noël and Rousselle (2011) observed a dissociation concerning participants’ age:
Only studies examining older children (10-year-olds and above) showed significant differences between dyscalculic and
control children in non-symbolic magnitude processing, whereas studies with younger dyscalculic children (6–9 years) only
revealed different performances in symbolic, but not non-symbolic magnitude processing. Second, the cut-off score on the
math test used to identify children with MD  needs to be taken into account (Butterworth, 2005; Geary, 2013): Some studies
concentrate on subjects performing at or below the 10th percentile, which are commonly referred to as dyscalculic. Others
set less strict criteria up to the 25th percentile rank (PR), which includes a group of children (i.e., PR 11–25) that is sometimes
considered as ‘low achievers’ (e.g., Geary, 2013). We  included studies with both kinds of samples and refer to them as chil-
dren with MD  hereinafter. A maximum of PR 25 was  chosen to both account for etiological variety of the disorder (Mazzocco
et al., 2011) and actual prevalence rates (Swanson & Jerman, 2006). Third, while most non-symbolic tasks are designed to
control for non-numerical visual parameters (e.g., item size or total dot surface) which carry heuristic information of the
magnitude, the degree of control varies (De Smedt et al., 2013). This has an impact on the extent to which visual cues can be
used when performing on comparison tasks, which might translate to the relative impairments we observe in MD  children
when compared to their typically achieving (TA) peers.

Consequently, we addressed two main research questions with the current meta-analysis: First, do children with MD
differ from TA controls in terms of (a) response times and (b) the CDE on response times in either symbolic or non-symbolic
magnitude comparison tasks or both? Second, to what extent are potential group differences moderated by (a) sample
characteristics (age, math test cut-off criterion) and (b) task characteristics (number range, use of stimuli in the subitizing
range, or visual properties of non-symbolic magnitude stimuli)? By statistically integrating the evidence in this regard, we
can provide a more profound answer to the abovementioned claims: (1) Is it correct that children with MD show a larger
CDE than control children and can we therefore conclude that they have a more imprecise representation of numbers?, (2) Is
there indeed a developmental trajectory in the performance of children with MD on symbolic versus non-symbolic tasks as
suggested by Noël and Rousselle (2011)?, and (3) Which hypothesis is more statistically robust: the ANS deficit hypothesis
or the access deficit hypothesis?

2. Methods

2.1. Identification of studies

Literature search started in December 2013 (see flow chart, Fig. 1). First, the search term combining sample, tasks and
outcome key words, was entered into the ERIC and EBSCOhost online databases, producing almost 3,000 hits. Reference lists
of key studies and reviews were screened for further relevant publications (i.e., snowball search, producing two further hits).
Moreover, 71 experts within the domain of numerical cognition and math learning difficulties were asked for unpublished
data, using a standardized email form, which resulted in six data sets provided by them.

All abstracts of the identified studies were screened for the following eight inclusion criteria: (1) The publication language
is English, German, or Dutch. (2) At least one sample of children with mathematical difficulties, i.e., low mathematical
achievement or dyscalculia, is compared with a typically achieving control group. Studies examining only general learning
disabilities were excluded. (3) We  focused on an age range between six and 14 years (cf. Noël & Rousselle, 2011). The
population of adolescents and adults was excluded because of differences in mathematical motivation and cognitive aspects
like verbal and non-verbal intelligence. (4) At least one symbolic or non-symbolic magnitude comparison task had to be
reported, that (5) captured RT data. More specifically, we included all comparison tasks with the instruction ‘indicate the
larger’, while excluding comparison tasks making use of other types of instructions, such as ‘indicate whether the magnitudes
are numerically the same or different’ (cf. Schneider et al., 2016). Moreover, symbolic tasks were only considered if the
numbers to be compared did not differ in physical size (thus studies on physical Stroop effects were excluded). (6) To
make sure that mathematical deficits could not be accounted for by general intellectual impairments (DSM-5, American
Psychiatric Association, 2013), samples had to have an at least average IQ ≥ 801. (7) Further, the MD diagnosis had to be the
result of systematic testing, with scores below a cut-off of PR 25 on standardized mathematical achievement tests, or below
a defined criterion on criterion-based tests. (8) For statistical power reasons, only samples with N ≥ 10 subjects per group
were selected (Morris, 2008).

In case that a study met  all criteria, but data on RT − or a split of data in small versus large distance trials for determining
the CDE − was missing, the authors were contacted. If the MD group was selected according to a PR larger than 25, the
authors were asked to provide us with a subset of the sample of interest. In total, 18 published and one unpublished study

(1,630 subjects) were included, with 44 outcomes for symbolic and 48 outcomes for non-symbolic magnitude comparisons
(see Table 1).

1 The common definition of below average intelligence applies the –1SD criterion, i.e., IQ ≤ 85. However, as two of the samples included in our meta-
analysis  (Kucian et al., 2011; Kuhn et al., 2013) contained few children with 80 ≤ IQ < 85, we set the overall criterion to IQ ≥ 80.
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Fig. 1. Flow chart of search process and inclusion criteria.

.2. Coding

The coding sheet captured study and sample characteristics, tasks details and relevant outcomes, i.e., mean and standard
eviation (SD) of response times per group, also separated for small versus large numerical distances, if available. All studies
ere coded by the first author, a doctoral student, and the fourth author, a master student with experience in numerical
ognition research. Initial interrater agreement was satisfactory (>77% agreement or consistency Intra-Class-Correlation ICC
. 97 for the numerical codes, and > 97% agreement or Cohen’s K > .94 for the categorical codes). All discordances could be

esolved after consultation with the second and third author.
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Table 1
Included studies.

Study Outcomes Sample

Format k Math
criterion

Baseline
reaction speed

IQ Reading
speed

Andersson and Östergren (2012) Symbolic 2 (2) unstandardized MD < CON MD < CON NA
Non-sym. 1 (0)

Ashkenazi et al. (2009) Symbolic 1 (0) unstandardized MD = CON MD = CON MD = CON
Brankaer et al. (2014) Symbolic 1 (1) standardized MD < CON MD = CON MD < CON

Non-sym. 1 (1)
Chan, Au, and Tang (2013) Symbolic 1 (0) unstandardized NA NA NA
de Oliveira Ferreira et al. (2012) Symbolic 2 (0) standardized MD = CON MD = CON MD*: MD = CON

MD  + L*: MD < CONNon-sym. 2 (0)

De Smedt and Gilmore (2011) Symbolic 2 (2) standardized NA NA NA
Non-sym. 2 (2)

Defever et al. (2013) Non-sym. 1 (1) standardized MD = CON MD = CON
Dinkel et al. (2013) Non-sym. 1 (0) standardized NA NA NA
Grond, Kucian, O’Gorman,

Martin, and von Aster
(Unpublished)

Non-sym. 1 (1) standardized MD = CON MD < CON NA

Heine et al. (2013) Non-sym. 4 (4) standardized NA MD = CON NA
Kucian et al. (2011) Non-sym. 1 (1) standardized NA NA NA
Kuhn et al. (2013) Symbolic 2 (2) standardized MD = CON RS*: MD  < CON

DYS*: MD = CON
MD < CON

Landerl (2013) Symbolic 2 (2) standardized NA MD < CON MD < CON
Non-sym. 1 (1)

Landerl and Kölle (2009) Symbolic 4 (4) standardized MD = CON MD < CON MD < CON
Non-sym. 2 (2)

Mussolin et al. (2010) Symbolic 1 (1) unstandardized NA MD = CON MD = CON
Non-sym. 3 (3)

Piazza et al. (2010) Non-sym. 1 (0) standardized NA MD = CON MD < CON
Rousselle and Noël (2007) Symbolic 2 (2) unstandardized NA MD = CON MD = CON

Non-sym. 2 (2)
Skagerlund and Träff (2014) Symbolic 1 (1) unstandardized MD < CON MD < CON NA

Non-sym. 1 (0)
Vanbinst et al. (2014) Symbolic 3 (3) standardized NA MD = CON MD = CON

Non-sym 3 (3)

Note: k: number of effect sizes on mean response time group difference (and on the comparison distance effect).
*Sample names as used in the original studies: MD: sample with math difficulties, MD + L: sample with math difficulties associated with language difficulties;

MLD:  sample with mathematics learning disabilities, LA:  sample with low achievement; RS:  sample with math difficulties not fulfilling the IQ discrepancy
criterion, DYS: DD sample fulfilling the IQ discrepancy criterion; MD = CON: no significant differences between MD  and control group, MD<CON: significantly
lower  baseline for reaction speed (i.e., higher response times), lower IQ or lower reading speed of the MD compared to the control group.

2.2.1. Sample characteristics
Each sample was more closely defined by its mean age and the PR used as cut-off for MD,  which were assessed as potential

moderators. Four control criteria were considered to further judge the quality of the sample: First, the source of MD  diagnosis
(standardized vs. unstandardized test) as expression of diagnostic validity; second, it was  coded whether the MD  and control
groups differed in their performance on simple reaction tasks, since such general reaction speed differences could partly
account for differences in magnitude comparison speed. Third and fourth, it was coded whether the MD and the control
group differed in reading speed or IQ (Tables 1 and 2).

2.2.2. Task characteristics
Symbolic comparison outcomes were specified by their number range (single versus two-digit). In non-symbolic out-

comes, we differentiated between tasks containing or not containing items in the subitizing range (i.e., magnitudes up to
four items which can readily be extracted from a set without counting). Moreover, following Gebuis and Reynvoet (2012), we
coded whether the following visual parameters were controlled for: (1) diameter, (2) density, (3) total surface and (4) convex
hull, i.e., the shortest possible contour line around the entire stimulus set. A composite score was calculated, reflecting the
number of controlled properties. For the computation of the CDE, small and large distance trials were assigned as defined
by the authors of each study.

2.3. Statistical analyses
All analyses were conducted separately for (a) symbolic and (b) non-symbolic effects, using the R packages metafor
(Viechtbauer, 2010) and robumeta (Fisher & Tipton, 2015). To assess overall group differences in mean RT, 44 symbolic and
48 non-symbolic outcomes could be included (Table 1). To assess group differences in CDE, we could only consider studies
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Table  2
Variables used in meta-regression.

Attribute Variable Metrics

Sample Age Continuous in years
Sample Cut-off Categorical 1 = 10 < PR ≤ 25

0 = PR ≤ 10
Sample Baseline reaction speed* Categorical 0 = no group difference

1 = group difference
Sample Math criterion* Categorical 1 = standardized test

0 = unstandardized test
Sample Intelligence* Categorical 0 = no group difference

1 = group difference
Sample Reading speed* Categorical 0 = no group difference

1 = group difference
Task:  Symbolic Number range Categorical 0 = single digit

1 = two-digit
Task: Non-symbolic Subitizing Categorical 0 = no magnitudes in subitizing

range
1 = magnitudes in subitizing
range

Task:  Non-symbolic Visual properties Continuous 0-4: number of visual
properties (diameter, density,
total surface and convex hull)
controlled for
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ote: * Control variables.

n which a split of RT data for small versus large trials was provided in the paper or on request (20 symbolic and 21 non-
ymbolic outcomes). In the majority of cases ‘small’ referred to numerical differences of one or two, and ‘large’ to differences
f three and larger2.

Moderating effects of the sample and task characteristics were assessed by simple meta-regression, trying to explain the
eterogeneity in group differences across outcomes by each potential moderator.

.3.1. Calculation of effect sizes
This meta-analysis compares two distinct groups, a MD and a TA control group. Contrary to studies that investigate

he full spectrum of mathematical competence by means of correlational analysis (e.g., Schneider et al., 2016), we  use
tandardized group differences. To assess whether children with MD differ from their TA peers, the groupwise means and
D of each symbolic and non-symbolic outcome were integrated to a standardized mean difference, assuming heteroscedastic
opulation variances in the two groups and corrected for positive bias, i.e., a variant of Hedges‘ g (Hedges, 1981; Bonett,
009).

To assess whether children with MD  and TA children differ in their CDE, this interaction was modelled as the group
ifference in distance effects, adapting a procedure by Morris (2008). For each group, the CDE was operationalized as the
ifference of RT for small and large distances, divided by the SD of the large distance trials.

.3.2. Meta-analytical model
To account for differences in sample and task characteristics between studies, and statistical dependencies of multiple

ndpoints from the same study, a random effects model with robust variance estimation (RVE; Hedges et al., 2010; Tipton,
015) was adopted. RVE deals with dependencies between multiple outcomes without requiring effect selection or integra-
ion (Hedges et al., 2010; Fisher & Tipton, 2015). It operates by correcting standard errors and requires fewer distributional
ssumptions and statistical power than multilevel modelling. RVE needs an estimate of the correlation � between all pairs of
bserved effect sizes within each study. In this meta-analysis, � was set to the default value of .80 (Tanner-Smith & Tipton,
014). Sensitivity analyses with � varied between 0 and 1 were conducted to assess the impact of this decision on the
stimated overall effect (ĝ), the standard error of its estimation (SE) and the between-study variance (�2). The assumption
f heterogeneity was assessed by the RVE-version of the Q-test, and the I2 value informs on the amount of between-study
ariance in excess of variance due to sampling error (Higgins, Thompson, Deeks, & Altman, 2003).
2 For the non-symbolic tasks, three out of 11 studies (Defever et al., 2013; Grond et al., unpublished; Rousselle & Noël, 2007) with four out of 21 outcomes
eported ratios instead of differences to define small or large.
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3. Results

3.1. Group differences in response time

The overall RT difference of children with MD  and controls was  significantly different from zero (p < .001) for both sym-
bolic (ĝ = 0.75, Fig. 2, Table 3) and non-symbolic tasks (ĝ = 0.24, Fig. 3, Table 3). However, the effect on symbolic outcomes
was significantly larger (t(15.3) = 4.06, p < .001). Sensitivity analysis showed that the impact of the assumed within-study
correlation between multiple effects (�) on ĝ,  SE and �2 was negligible for all outcomes.

The Q-test indicated significant heterogeneity only for symbolic outcomes (Q ∼ �2(12.08) = 31.10, p < .002; �2 = 0.10;
I2 = 61.14%; Table 3). This heterogeneity could not be explained by any of the tested moderator variables (all ps > .22, Table 4).
For example, although the effect was slightly stronger in samples with the stricter cut-off criterion of PR ≤ 10 (�ĝ = 0.23 when
compared to the PR ≤ 25 samples, Table 4), it failed to reach statistical significance. This was also the case when using the
IQ discrepancy criterion3 as a signature of clinically relevant dyscalculia, instead. On non-symbolic outcomes, where no
significant heterogeneity was detected (Q ∼ �2(9.88) = 9.88, p = .44), moderator analyses revealed no significant influences
either.

Table 3
Random effects models – group difference in mean RT and CDE.

Heterogeneity

Effect k ĝ SE t CI 95% �2 I2 Q

Mean RT
Symbolic 44 0.75*** 0.11 6.85 [0.51; 0.99] 0.10 61.14 31.10**

Non-sym. 48 0.24*** 0.05 4.82 [0.13; 0.35] <0.001 <0.001 9.88

CDE  on RT
Symbolic 20 −0.05 0.07 −0.69 [−0.21; 0.11] 0.02 30.31 13.06
Non-sym. 21 −0.12 0.08 −1.49 [−0.31; 0.07] 0.04 36.75 15.93

Note: RT: response time.
CDE: comparison distance effect.
ĝ: estimated average effect across all outcomes
*p < .05, **p < .01, ***p < .001.

Table 4
Meta-regression – mean RT symbolic.

Effect Category k ĝ SE t p(t) CI 95%

Age intercept b0 44 0.39 0.47 0.83 [−0.81; 1.60]
slope b1 0.04 0.06 0.71 .51 [−0.11; 0.19]

Cut-off 10 < PR ≤ 25 43 0.60 0.11 5.74 [0.34; 0.86]
PR  ≤ 10 0.23 0.18 1.30 .25 [−0.22; 0.68]

Baseline RT* no difference 23 0.80 0.34 2.35 [−0.31; 1.90]
difference 0.31 0.38 0.83 .45 [−0.71; 1.33]

Intelligence* no difference 39 0.86 0.24 3.66 [0.27; 1.45]
difference −0.09 0.27 −0.31 .76 [−0.71; 0.54]

Reading speed* no difference 33 0.89 0.28 3.16 [0.09; 1.68]
difference −0.20 0.29 −0.67 .52 [−0.89; 0.50]

Math criterion* unstandardized 44 0.91 0.19 4.73 [0.40; 1.42]
standardized −0.30 0.22 −1.32 .22 [−0.80; 0.21]
Note: see Table 3.
For all dummy-coded moderators (i.e. all except age), the estimate ĝ in the second category indicates the increment or decrement of the effect compared
to  the reference category above (cf. Table 2).

* control variables.

3 Only two of the studies included in this meta-analysis (Brankaer et al., 2014; Kuhn et al., 2013) reported explicitly that the IQ discrepancy criterion was
set  at individual level. For all the other studies, we  could only compute a proxy at group level when group means of both math and IQ test results were
available.
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Fig. 2. Group difference in response times – symbolic.
Note: Sample names as used in the original studies: MD-d:  IQ discrepant mathematical difficulties, MD: sample with math difficulties, MD + L: sample
with  math difficulties associated with language difficulties; MLD: children with mathematics learning disabilities, LA:  children with low achievement; RS:
sample  with math difficulties not fulfilling the IQ discrepancy criterion, DYS: DD sample fulfilling the IQ discrepancy criterion.
Note that Skagerlund and Träff (2014) report group effects adjusted for various cognitive measures. As such adjusted estimates are (i) neither directly
comparable to Hedges’g values from other studies and (ii) Fischer (2015) argues convincingly against the use of ANCOVA in this data, we calculated Hedges’
g  from raw means and standard deviations. Consequently, the findings summarized here are not in line with the results reported by Skagerlund and Träff
(2014).
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Fig. 3. Group difference in response times – non-symbolic. Note: see Fig. 2.
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Fig. 4. Group difference in distance effects – symbolic. Note: see Fig. 2.
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.2. Group differences in the comparison distance effect

The average group differences on the CDE (Table 3) for both symbolic (ĝ = −0.05, Fig. 4) and non-symbolic stimuli
ĝ = −0.12, Fig. 5) did neither differ from zero (p > .17) nor from each other (t(11.21) = 0.88, p = .39). The impact of differ-
nt values of � on ĝ, SE and �2 was negligible. There was  no significant amount of heterogeneity across the studies’ effects
Q statistics with ps > .10, Table 3). Likewise, there were no significant moderator effects.

.3. Publication bias

This meta-analysis was a priori designed to minimize influences of publication bias by including only studies with group
ized N ≥ 10 (Morris, 2008), and by searching for unpublished data. To examine whether there were still clues of bias due to

issing studies, funnel plots were generated to visually inspect asymmetries in the distribution of effects on symbolic and

on-symbolic tasks (see Fig. A1 in the Appendix A). Statistically, the RVE version of Egger’s regression test of the standard
rror’s influence on the estimated effect size (Egger, Smith, Schneider, & Minder, 1997) did not corroborate asymmetry for
ny of the outcomes (all ps > .10) so that publication bias is unlikely.



162 C. Schwenk et al. / Research in Developmental Disabilities 64 (2017) 152–167
Fig. 5. Group difference in distance effects – non-symbolic. Note: see Fig. 2.

4. Discussion

This meta-analysis compared children with and without mathematical difficulties, i.e., low achievement up to dyscalculia,
in their performance on symbolic and non-symbolic magnitude comparison tasks. The key results were that (a) children
with MD  displayed stronger impairments in their response speed on symbolic compared to non-symbolic tasks, (b) neither
the sample characteristics age nor the cut-off set to define MD nor the task variables number range, the use of stimuli in the
subitizing range nor the number of visual task properties controlled for moderated group differences and (c) on a meta-analytical
level, no group differences were corroborated with respect to the comparison distance effect.

In line with several empirical studies (e.g., De Smedt & Gilmore, 2011; Landerl & Kölle, 2009; Rousselle & Noel, 2007;
Olsson, Östergren, & Träff, 2016), our results support the finding that in children with MD,  symbolic magnitude processing is
more strongly impaired than non-symbolic processing. These results conform with the access-deficit hypothesis (Rousselle
& Noël, 2007), which implies that impairments observed in children with MD arise from accessing numerical meaning from
symbols (i.e., numbers) rather than from difficulties in the innate ANS per se. Consistent with this, longitudinal studies have
shown that in predicting future mathematical performance in young children, symbolic rather than non-symbolic magnitude
processing is crucial (Bartelet, Vaessen, Blomert, & Ansari, 2014; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013). Further,
the relation between non-symbolic magnitude processing and math achievement that has been found in some studies (e.g.,

Mazzocco et al., 2011) may  be mediated by symbolic magnitude processing (van Marle, Chu, Li, & Geary, 2014) or more
general skills like inhibitory control (Gilmore et al., 2013). In a recent study, Vanbinst, Ansari, Ghesquière and De Smedt
(2016) even found that symbolic magnitude processing is as important for predicting arithmetic skills in elementary school
as phonological awareness is for predicting future reading skills. The performance on symbolic magnitude comparison
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herefore appears well-suited as a core marker for predicting the development of arithmetic skills and especially for an early
dentification of MD.  However, in order to use this knowledge within a diagnostic framework, future studies should focus on
ognitive processes underlying the performance in symbolic magnitude comparison (e.g., number identification, cardinality
nowledge, ordinality knowledge; Merkley & Ansari, 2016). In this regard, Sasanguie, Lyons, De Smedt and Reynvoet (2016)
ecently unraveled adults’ performance on a symbolic comparison task and demonstrated that of several cognitive candidate
rocesses, ordering ability was most predictive and fully mediated the relationship between digit comparison performance
nd arithmetic.

Interestingly, this meta-analysis suggests that the difference in symbolic and non-symbolic magnitude comparison
etween children with MD  and controls is not moderated by age, i.e., follows a stable developmental trajectory: Chil-
ren with MD  have difficulties in processing symbolic numbers and, to a lesser degree, non-symbolic numerosities from
he start, and this difference remains stable across childhood. An important implication of this finding is that the difficulties
f children with MD appear to be mainly related to the acquisition of a culturally transmitted rather than an innate skill:
he fluent processing and understanding of numerical symbols. This skill can be trained. For example, early interventions
hat focus on understanding and processing numbers have been shown to result in substantial and broad improvements
n early math skills of preschoolers (Ramani, Siegler, & Hitti, 2012; Sella, Tressoldi, Lucangeli, & Zorzi, 2016; Maertens, De
medt, Sasanguie, Elen, & Reynvoet, 2016). However, although this meta-analysis showed that the impairments of children
ith MD  are significantly smaller on non-symbolic – when compared to symbolic– outcomes, they are not negligible and

t is possible that other indices based on accuracy (such as the Weber fraction) would have been even more sensitive to
on-symbolic effects than response time. This is interesting in the context of a recent study by Wang, Odic, Halberda and
eigenson (2016) who trained preschoolers on non-symbolic magnitude processing and observed short-term transfer to
symbolic) arithmetic skills. However, the causal evidence of such training studies is discussed (Merkley, Matejko, & Ansari,
017), such that additional research is needed to clarify the causal pathways between ANS and symbolic performance up to
rithmetic improvements.

Meta-analytical results necessarily reflect a highly aggregate level that deals with the common denominator of compa-
able, but still different studies. While meta-analyses help to keep an eye on the big picture, they do not inform us about
mportant effects at the (inter)individual level. For example, children tend to show different profiles of the association
etween their non-symbolic and symbolic magnitude processing competences (Chew, Forte, & Reeve, 2016). Accordingly,
on-symbolic processing is likely to only impact the mathematical development of some subgroups, so that the relatively
eaker effect that turns out at group level does not generalize to each cluster of children with MD up to dyscalculia.

We also found that neither reading skills nor IQ, which were treated as control variables, explained the group differences
n magnitude comparison speed. This is in line with a growing body of studies finding that reading skills do not affect tasks

ithout verbal content (Raddatz, Kuhn, Holling, Moll, & Dobel, 2016). It further conforms to results showing that when MD
r even dyscalculia is present, IQ does not substantially affect numerical processing (Brankaer et al., 2014).

Regarding stimulus properties, several studies have shown that non-symbolic magnitudes are processed faster when
isual and numerical cues are compatible, suggesting that visually controlled tasks require inhibition of the non-meaningful
isual cues (e.g., Clayton & Gilmore, 2015). Further, a replication study showed that when visual cues are controlled in
on-symbolic tasks, no relationship of performance on this task and exact number knowledge could be found in 3–6 year
ld children (Negen & Sarnecka, 2014). In the original study, by contrast, a relationship was observed in the case that visual
ues were not controlled (Mussolin, Nys, Leybaert, & Content, 2012). In our meta-analysis, the number of visual parameters
out of stimulus diameter, density, total surface and convex hull) controlled for was  not a significant moderator of the
elative impairments in children with MD.  A closer look at the different studies reveals that both the definitions of the visual
arameters (especially in the distinction of convex hull and total surface) and the technical scripts used for their controls
ary. Consequently, this effect might not (yet) be assessable on a meta-analytical level, but requires experimental studies
nd a consensus in operationalization before.

The comparison distance effect has been described by several authors as a measure of the precision of mental number
epresentation. Smaller distance effects have been related to a more precise number representation and were consequently
egarded as indicators of better mathematical skills (although response inhibition rather than representational overlap has
een suggested as an alternative explanation; van Opstal et al., 2008). Some studies have indeed found a relationship between

ndividual distance effects and mathematical achievement (e.g., Holloway & Ansari, 2009; Mussolin et al., 2010), whereas
thers have not (e.g., Lyons et al., 2015; Rousselle & Noel, 2007). In this meta-analysis, we did not find qualitative differences
n response speed based distance effects between children with and without MD.  This finding, applying to both symbolic
nd non-symbolic tasks, has two important implications: First, it undercuts the idea that the distance effect should be used
or diagnostic purposes. Second, it does not support the assumption that children with MD have less precise numerical
epresentations as a result of a noisier mental number line. This is reflected in the recent debate on whether the innate ANS
ystem in fact exists at all. Indeed, recently Leibovich, Katzin, Harel and Henik (2016) reviewed studies investigating the
NS and concluded that the ability to extract discrete number originates from the ability to process continuous magnitudes,

hus rather suggesting an Approximate Magnitude System (AMS) than an Approximate Number System. Sasanguie and

eynvoet (2016) commented on this review by emphasizing the implications of the AMS  instead of an ANS for the symbol
rounding problem: If the ANS does exist, how are then numerical symbols learned, how do they acquire their meaning?
y alternatively explaining the arguments previously put forward in favor of the ANS-mapping hypothesis, Reynvoet and
asanguie (2016) argued for an account supporting the development of an exact symbolic system next to the ANS/AMS.
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Following Carey (2009), these authors suggest that, in a first step, numerical symbols are mapped on the object tracking
system, a system that allows to keep track up to four items (or for an alternative up to 10 fingers, see Siegler, 2016). In a
second phase, knowledge about the counting list may  be used to infer critical principles of the symbolic number system,
such as the principle that numbers later in the counting list are larger (Davidson, Eng, & Barner, 2012). As a result, gradually,
symbolic numbers (in terms of digits) are primarily represented through (order) associations with other symbolic numbers
(number words) in a separate semantic network of symbolic numbers (Krajci, Lengyel, & Kojouharova, 2016; Sasanguie et al.,
2017). Together, the absence of qualitative differences in response speed-based distance effects between children with and
without MD  and the recent alternative account for symbol learning suggest that it is unlikely that mathematical difficulties
can be explained by less precise numerical representations.

In this meta-analysis, we chose responses times as a criterion that is suitable to express commonalities and differences
between symbolic and non-symbolic magnitude comparison performance. By contrast, accuracy information is characterized
by considerable limitations: While Weber fractions are the state-of-the-art measure for non-symbolic, but not symbolic,
tasks, simple accuracy data (error rate or 1-error rate) are prone to ceiling effects and very low variance, which in turn
tends to inflate the effect sizes (Hedges’g) based thereon. However, speed is just one expression of performance, of course,
and ignoring accuracy information would leave a blind spot to the picture of evidence, e.g., regarding the speed-accuracy
trade-off. That is why we provide an overview of the accuracy data that was  accessible for 13 of the 19 studies included in
this meta-analysis (cf. supplementary material). In summary, all the overall effects on accuracy (symbolic and non-symbolic
group difference, CDE) are highly similar to the ones reported based on the response time data. Crucially, there are no
discordances between the two measures in any of the included outcomes, i.e., no cases where the MD group appeared to be
slower but more accurate than the typically achieving control group or vice versa. Thus, we  find no qualitative difference in
speed-accuracy trade-off between children with and without MD on a meta-analytical level.

5. Conclusion

To conclude, we found that irrespective of age, IQ and reading skills, response times for symbolic magnitude comparison
tasks were better able to discriminate between children with and without MD than for non-symbolic tasks, supporting the
access-deficit hypothesis. Further, the CDE did not differ substantially between children with MD and typically achieving
controls. This result, together with the finding that the distance effect is generally no reliable indicator of mathematical skills
in representative samples (Lyons et al., 2015), supports the notion that the diagnostic and theoretical value of the CDE is
uncertain. Rather, speed of symbolic magnitude processing proves to be a substantial indicator of mathematical difficulties
and should in turn be a core aspect of interventions designed to support children who are impaired in their mathematical

development.

Appendix A.
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Fig. A1. Funnel plots for (a) group difference in RT on symbolic and (b) non-symbolic magnitude comparison tasks. Funnel plots display the distribution of
outcomes included in a meta-analysis and serve as a visual tool to check for publication bias. Each effect size is plotted against its sampling error, which is a
function  of sample size. The absence of publication bias would entail a symmetric distribution of effect sizes around the mean and a variance of estimated
effects that decreases with the standard error (i.e. with increasing sample size). Such funnel plots are biased when several effects per study are treated as
if  they were independent. Therefore, effects were integrated to one mean per study, weighted by the number of trials per task or subjects per group before
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enerating the plots. Here, only the plot for the symbolic outcomes includes few effect sizes outside the expected funnel. However, this asymmetry is not
orroborated by the RVE version of Egger’s regression test of the standard error’s influence on the estimated effect size (Egger, Smith, Schneider, & Minder,
997; all ps > .10).

ppendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
.ridd.2017.03.003.
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